Problems	Prof. Peter Koepke
Series 7	Dr. Philipp Schlicht

Problem 28 (4 points). The *lexicographical ordering* $<_{lex}$ on Ord \times Ord is defined by

$$(i, j) <_{\text{lex}} (k, l) \iff (i < k) \text{ or } (i = k \text{ and } j < l).$$

Prove the following statements for ordinal arithmetic.

- (a) $\langle \alpha + \beta, \langle \rangle$ is isomorphic to $\langle (\{0\} \times \alpha) \cup (\{1\} \times \beta), \langle | ex \rangle \rangle$.
- (b) $\langle \alpha \cdot \beta, \langle \rangle$ is isomorphic to $\langle \beta \times \alpha, \langle \rangle$.

Problem 29 (6 points). Suppose that κ is an infinite cardinal. Determine the cardinality of the following sets.

- (a) The set ${}^{<\omega}\kappa = \bigcup_{n \in \omega} {}^n\kappa$ of tuples in κ .
- (b) The set of finite subsets of κ .
- (c) The set of rational numbers.
- (d) The set of functions $f \colon \kappa \to \kappa$.
- (e) The set of bijections $f \colon \kappa \to \kappa$.
- (f) The set of strictly monotone functions $f: \kappa \to \kappa$.

Problem 30 (4 points). Prove that $\operatorname{card}(\mathbb{R}^+) = 2^{\omega}$.

Problem 31 (4 points). Prove the following statements.

- (a) $\prod_{n \in \omega} \aleph_n = (\aleph_{\omega})^{\omega}$.
- (b) If the CH holds (i.e. $2^{\aleph_0} = \aleph_1$), then $\aleph_n^{\omega} = \aleph_n$ for all $n \ge 1$.

Problem 32 (4 points). Prove that $\kappa^{\operatorname{cof}(\kappa)} > \kappa$ for all infinite cardinals κ , without using König's theorem. (*Hint: as in the proof of Cantor's theorem, suppose that there is a list of all functions* $f: \operatorname{cof}(\kappa) \to \kappa$ and construct a function $g: \operatorname{cof}(\kappa) \to \kappa$ which is not in this list.)

Due Friday, December 9, before the lecture.